
Computing the envelope for stepwise constant resource allocations

Nicola Muscettola

NASA Ames Research Center
Moffett Field, California 94035

mus@email.arc.nasa.gov

Abstract
Estimating tight resource level bounds is a fundamental
problem in the construction of flexible plans with resource
utilization. In this paper we describe an efficient algorithm
that builds a resource envelope, the tightest possible such
bound. The algorithm is based on transforming the
temporal network of resource consuming and producing
events into a flow network with nodes equal to the events
and edges equal to the necessary predecessor links between
events. The incremental solution of a staged maximum
flow problem on the network is then used to compute the
time of occurrence and the height of each step of the
resource envelope profile. The staged algorithm has the
same computational complexity of solving a maximum flow
problem on the entire flow network. This makes this
method computationally feasible for use in the inner loop
of search-based scheduling algorithms.

Introduction
Retaining flexibility in the execution of activity plans is a
fundamental technique for dealing with the uncertain
conditions under which the plans will be executed. For
example, flexible plans allow explicit reasoning about the
temporal uncontrollability of exogenous events (Morris,
Muscettola, Vidal 2001) and the incorporation of
execution countermeasures within the flexible network.
Tightly constrained schedules (e.g., schedules that assign
a precise start and end time to all activities) are typically
brittle and it is very difficult to closely follow their
directions during execution. For an example of what
overly tight schedules can do to an intelligent execution
system, consider the “Skylab strike” (Cooper, 1996), when
during the Skylab 4 mission astronauts went on a sit-down
strike after 45 days of trying to catch up with the demands
of a fast paced schedule with no room for them to adjust to
the space environment.
A major obstacle to building flexible schedules, however,
remains the difficulty of accurately estimating the amount
of resources that a flexible plan may need across all of its
possible executions. This problem is particularly difficult
for resources with multiple capacity that can be both
consumed and produced. In the worst case large plans may
exhibit both a high level of activity parallelism and a large
number of required synchronization constraints among
activities. Most of the scheduling methods available to
date for this problem (Cesta, Oddi Smith, 2000) eventually
produce a fixed activity schedule, even if they make
substantial use of an activity plan’s flexibility during
schedule construction.
To appreciate the difficulty of precisely estimating
resource consumption, consider the fact that a flexible
activity plan has an exponential number of possible

instantiated schedules. This means that methods based on
complete enumeration are typically out of the question.
Lately, however, new techniques have been developed
(Laborie, 2001) based on direct propagation of
information on the temporal constraints of the plan. This
yields both an upper bound and a lower bound on the
resource level required by the plan over time. This
information can be used in various ways, e.g., to decide
when to backtrack (when the lower/upper bound interval
is outside of the range of allowed resource levels at some
time) and when a solution has been achieved (when the
lower/upper bound interval is inside the range of allowed
resource levels at all times). Bound tightness is extremely
important computationally since both as backtracking and
termination criteria it can save a potentially exponential
amount of search when compared to a looser bound.
A natural question is whether constructing thetightest
possible resource level bounds is computationally feasible.
This paper answers this question in the affirmative. We
describe an efficient algorithm for the computation of a
resource level envelope, a resource level bound such that
for each time there exists at least a schedule for the
activity plan that will consume the amount of resource
indicated by the bound. The algorithm is polynomial, with
complexity equivalent to solving a maximum flow
problem on a flow network of the size of the original
activity plan.
In the rest of the paper we first introduce the formal model
of activity networks with resource consumption. Then we
review the literature on resource contention measures and
show an example in which the current state of the art in
resource level bounds is inadequate. Then we give an
intuitive understanding of our method to compute the
resource envelope. Then we establish the connection
between maximum flow problems and finding sets of
activities that have the optimal contribution to the
resource envelope. We then show that these sets of
activities compute an envelope. We then describe an
efficient envelope algorithm and its complexity. We
conclude discussing future work.

Activity Networks and Resource Consumption
Figure 1 shows an activity network with resource
allocations. The network has two time variables per
activity, a start event and an end event (e.g.,e1s ande1e for
activity A1), a non-negative flexible activity duration link
(e.g., [2, 5] for activity A1), and flexible separation links
between events (e.g.,[0, 4] from e3e to e4s). A time origin,
Ts, corresponds to time0 and supports separation links to
other events. We assume that all events occur afterTs and

before an eventTe rigidly connected toTs. The interval
TsTe is thetime horizonT of the network.

Figure 1: An activity network with resource allocations.

Time origin, events and links constitute a Simple
Temporal Network (STN) (Dechter, Meiri, Pearl 1991).
Unlike regular STNs, however, each event has an
associatedallocation variablewith real domain (e.g.,r 31

for event e3s) representing the amount of resource
allocated when the event occurs. We will call this
augmented networkR a piecewise-constant Resource
allocation STN(cR-STN). In the following we will assume
that all allocations refer to a single, multi-capacity
resource. The extension of the results to the case of
multiple resources is straightforward. An evente- with
negative allocation is aconsumer, while an e+ with
positive allocation is aproducer.
Note that an event can be either a consumer or a producer
in different instantiations of the allocation variables (e.g.,
event e2s for which the bound forr 21 is [-1, 3]). This
allows reasoning about dual-use activities (e.g., starting a
car and running it both make use of the alternator as a
power consumer or producer). Moreover, some events can
have opposite resource allocation of other events (e.g.,e1e

vs. e1s). This allows modeling reusable allocations, such as
power consumption by an activity. Note that this model
does not cover continuous accumulation such as change of
energy stored in a battery over time. A conservative
approximation can however be achieved by accounting for
the entire resource usage at the activity start or end. We
will always assume that the cR-STN is temporally
consistent. From the STN theory, this means that the
shortest-path problem associated toR has a solution.
Given two eventse1 and e2 we denote with|e1e2| the
shortest-path frome1 to e2. We will call a full instantiation
of the time variables inR a schedules(.) wheres(e)is the
time of occurrence of evente according to schedules. We
will call S the set of all possible consistent schedules for
R. Each evente has a time bound[et(e), lt(e)], with et(e)
= -|eTs| and lt(e)= |Tse|, representing the range of time
valuess(e) for all s∈∈∈∈ S. Finally, given three events,e1, e2

and e3, the triangular inequality|e1e3| ≤≤≤≤ |e1e2| + |e2e3|
holds.
A fundamental data structure used in the rest of the paper
is theprecedence graph,Pred(R), for a cR-STNR. This
is defined as a graph with the same events asR and such
that for any two eventse1 ande2 with |e1 e2| ≤≤≤≤ 0 there is a

path frome1 to e2 in Pred(R). Alternatively, we can say
that an evente1 precedes anothere2 in the precedence
graph ife1 cannot be executed beforee2. There are several
possible precedence graphs for a networkR. A way to
build one is to run an all-pairs shortest-path algorithm and
retain only the edges with non-positive shortest distance.
Smaller graphs can be obtained by eliminating dominated
edges, e.g., by applying dispatchability minimization
(Tsamardinos, Muscettola, Morris 1998). The cost of
computingPred(R) is bound byO(VE + V2 lg V) where
V is the number of events andE the number of temporal
distance constraints in the original cR-STN. The use of
different precedence graphs may affect algorithm
performance but does not affect the theoretical foundation
described here.
Considering again the activity network in Figure 1, Figure
2 depicts one of its precedence graphs with each event
labeled with the time bound and the maximum allowed
resource allocation.

Resource Contention Measures
Safe execution of a flexible activity networks needs to
avoid resource contention, i.e., the possibility that for
some consistent time assignment to the events there is at
least one time at which the total amount of resource
allocated is outside the availability bounds. There are
essentially two methods for estimating resource
contention: heuristic and exact. Most of the heuristic
techniques (Sadeh, 1991)(Muscettola, 1994) (Beck et al.,
1997) measure the probability of an activity requesting a
resource at a certain time. This probability is estimated
either analytically on a relaxed constraint network or
stochastically by sampling time assignments on the full
constraint network. The occurrence probabilities are then
combined in an aggregate demand on resources over time,
the contention measure. Probabilistic contention can give
a measure of likelihood of a conflict occurring. However,
it is not a safe measure, i.e., the fact that it does not
identify any conflict does not exclude the possibility that
the cR-STN could have a variable instantiation with
inconsistent resource allocation. Exact methods avoid this
problem and are based on the computation of sufficient
conditions for the lack of contention. (Laborie, 2001) has a
good survey of such methods. Current exact methods
operate on relaxations of the full constraint network. For
example, edge-finding techniques (Nuijten, 1994) analyze
how an activity can be scheduled relatively to a subset of
activities, comparing the sum of all durations with a time
interval derived from the time bounds of all the activities
under consideration. Relying only on time bounds ignores
much of the inter-activity flexible constraints and tend to
be effective only when the time bounds are relatively tight.
Therefore algorithms that use these contention measures
tend to eliminate much of the flexibility in the activity
network. (Laborie, 2001) goes further in exploiting the
information about mutual activity constraints. One of the
two metrics proposed in that paper is thebalance
constraint, an event-centered approach that estimates
upper and lower bounds on the resource level immediately
before and after each evente in the cR-STN. These bounds
precisely estimate the contribution of events that must

[1, 10]

<e2e, r22>

A1

A2

A3

A4

<e1s, r1> <e1e, -r1>

<e2s, r21>

<e4s, r4>

<e4e, -r4>

<e3s, r31> <e3e, r32>

Ts Te[30, 30]

[1, 4]

[2, 5]

[-2, 3]

[1, 5]

[2, 3]

[0, 4]

[-1, 4]

[0, +∞]

[0, +∞]

[1, 1]

[0, 6]

r1 ∈ [1, 4]
r21∈ [-1, 3]
r22∈ [1, 2]

r31∈ [-7, -5]
r32∈ [1, 3]
r4 ∈ [2, 4]

precedee and overestimate the contribution of events that
may or may not happen beforee. The over-estimate is
obtained considering only the worst-case situation in
which only the events that have the worst contribution
(producers for upper bounds and consumers for lower
bounds) happen beforee. Although the balance constraint
better exploits the information in the activity network, the
bounds that it produce may be very loose for networks
with significant amounts of parallelism.

Figure 2: Precedence graph with time/resource usage.

For example, consider the activity graph in Figure 3,
consisting of two rigid chains ofn activities with the same
fixed duration and the same fixed activity separation, and
occurring on a horizonT wide enough to allow any
feasible ordering among them. Each activity has a
reusable consumption of one unit and the resource has two
available units of capacity over time. It is clear that all the
executions of this activity network are consistent with the
resource constraint, since the maximum resource
consumption is one unit of capacity for each chain at any
time. However, the balance constraint will always detect
an over-allocation unless the network is further
constrained in one of two ways: a) the start activityn of
one chain occurs no later than the start of the second
activity of the other; or b) more than two activities overlap
and there is an activityk on one chain that must start
between the end of activityi and the start of activityi+2
on the other chain (Figure 3). These additional constraints
unnecessarily eliminate a large number of legal executions
of the activity network.
The cause of the inability of the balance constraint to
correctly handle this situation depends on its inability to
account for the constraint structure of parallel chains
simultaneouslysince it can only take advantage of the full
structure of the network for chains of predecessors. In this
paper we will show that it is possible to effectively useall
precedence constraints in the network simultaneously
leading to the estimate of the best possible upper bound for
resource consumption.

Resource Envelopes
Our approach is to build the tightest possible resource-
centered exact contention measure. This means that for
any possible time value we will compute the maximum
and minimum possible consumption among all possible
schedules ofR. Note that the maximum (minimum)
overall resource level induced byR for any possible
schedule can always be obtained by assigning each
allocation variable to its maximum (minimum) possible
value. For any specific value assignment to the allocation
variables, each event has a constant weight: positive,c(e+),

for a producer and negative,–c(e-), for a consumer. More
formally, given a schedules∈∈∈∈S and a timet ∈∈∈∈ T, Es(t) is
the set of eventse such thats(e) ≤≤≤≤ t. For any subsetA of
the set of events inR, E(R), we will call theresource level
increment∆∆∆∆(A) =ΣΣΣΣe+,e-∈∈∈∈A c(e+) – c(e-). The increment is
also defined for the empty set as∆∆∆∆(∅∅∅∅)=0. Therefore, the
resource levelat time t due to schedules is L s(t) =
∆∆∆∆(Es(t)). The maximum resource envelopeat time t is
L max(t) = maxs∈∈∈∈S (L s(t)). Similarly, theminimum resource
envelopeat time t is L min(t) = mins∈∈∈∈S (L s(t)). Our goal is
to compute bothL max andL min overT.

Figure 3: Over-constraining of activity network flexibility.

In the following sections we will rigorously develop an
efficient algorithm to compute envelopes. Here, we want
to give an intuitive account of what is involved and of the
key complexity of envelope computation by analyzing
some simple examples.
First consider a single activity with a reusable allocation
(Figure 4(a)). We could build the envelopeL max by asking
at each timet∈∈∈∈T whetherA1 can happen before, after or
can overlap t. If the activity starts with a resource
production (Figure 4(b)), then we wantA1 to start, contain
or end att. This is always possible betweenet(e1s) and
lt(e2s). During this interval the resource envelope is1
while outside of it it is0. Conversely, ifA1 starts with a
consumer (Figure 4(c)), then we want for the activity to
happen completely before or aftert. This is possible only
before lt(e1s) and afteret(e1e). The envelope will be0 at
every time except betweenlt(e1s) andet(e1e) where it will
be–1. This suggests a strategy that looks at each event and
considers the incremental contribution of the event’s
weight to the envelope at the earliest time for producers or
at the latest time for consumers.
When computingL max for a complex network, however,
events cannot usually be scheduled independently.
Consider the simplest network, i.e., a rigidly linked pair of
activities with a reusable resource allocation (Figure 5(a)).
In this case the time of occurrence ofe2e ande3s are bound
together. Looking at the contribution to the envelope of
each event in isolation, we would want to add the
contribution of e2e as late as possible since it is a
consumer, and the contribution ofe3s as early as possible,
since it is a producer. The decision on which time to
choose depends on the total contribution ofboth events.
The total contribution will be added atlt(e2e) if the total
contribution is a consumption (Figure 5(b)) or at et(e3s) if
the total contribution is a production (Figure 5(c)). Note
that in both casese2s and e3s are pendingat the selected
time, i.e., their contribution has not been added yet to the
envelope but they both could occur at the selected time.
This suggests a strategy that considers all pending events
at either the earliest time or the latest time of some event
and schedule those that either must be scheduled or are
advantageous, i.e., contribute overall with a production of
resource.

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], 4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -5> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e

A21 A22 A2n

…

[1, 1]

[2, 2]

-1 +1A11 A12 A1n

…

[0, +∞][0, +∞]

A23

Now consider the network inFigure 1and the event time
bounds, maximum resource allocation and precedence
graph in Figure 2. Assume that we want to compute
L max(3), the maximum envelope at time 3. The set of
events that may be scheduled before, at or after time 3 is
{e1s, e1e, e3s, e3e, e4s}. However, of these only{e1e, e3s, e3e,
e4s} are pending since it is advantageous to considere1s at
its earliest time1. The subset of events that we could
consider at time3 are all those that will have to occur at or
before3 assuming that we select for some set of events to
occur at3. These subsets are{e3s}, {e1s}, {e3e, e3s} and{e4s,
e1e, e3e, e3s}. Unfortunately, each of these subsets has a
negative weight and therefore none of them is considered
at time 3. At time 4 the set of pending events is
augmented withe2s and the total contribution of the new
subset of pending events{e2s, e4s, e1e, e3e, e3s} is positive.

Figure 4: Maximum resource envelope for a single activity.

The selection of a maximally advantageous subset among
the pending events is the key source of complexity of
envelope calculation. An exhaustive enumeration of all
subsets can obviously be very expensive. Fortunately we
can make very good use of the information in the
precedence graph. It turns out that this problem is
equivalent to a maximum flow problem solved on an
appropriate auxiliary flow network built on the basis of
Pred(R). We will discuss this rigorously in the rest of the
paper.

Calculating Maximum Resource
Level Increments

Consider now an intervalH⊆⊆⊆⊆T. We can partition all
events in R into three sets depending on their relative
position with respect toH: 1) the closed eventsCH with
all events that must occur strictly before or at the start of
H, i.e., such that thatlt(e) ≤≤≤≤ start(H); 2) the pending
eventsRH with all events that can occur within or at the
end of intervalH, i.e., such thatlt(e) > start(H) andet(e)
≤≤≤≤ end(H); and 3) theopen eventsOH with all events that
must occur strictly afterH, i.e., such thatet(e) > end(H).
The setRH could contain events that can be scheduled
both inside and outsideH. If H=T, then CT= ∅∅∅∅, RT =
E(R) and OH=∅∅∅∅. The intervalH could be reduced to a
single instant of time, i.e.,H=[t, t]. In this case we will
use the simplifying notationCt=C[t, t] , Rt=R[t, t] and
Ot=O[t, t] .
We are interested in a particular kind of subset ofRH.
Assume that we wanted to compute the resource level
increment for a schedules at a timet∈∈∈∈H. This will always
include the contribution of all events inCH and none of

those in OH irrespective ofs and t. With respect to the
events inRH, we can see that if an event is scheduled to
occur at or beforet then all of its predecessors (according
to Pred(R)) will also have to occur at or beforet. In other
words, it is possible to find a set of eventsX ∈∈∈∈ RH such
that the eventsep∈∈∈∈RH that are scheduled no later thant in
s are those such that|exep| ≤≤≤≤ 0 for someex ∈∈∈∈ X. We call
this thepredecessor setof X, PX. Therefore, the resource
level at time t for a given schedules is the sum of the
weights of events inCH and inPX.

Figure 5: Maximum envelope for two chained activities.

It is easy to verify that given two predecessor setsPX and
PY, bothPX ∩∩∩∩ PY andPX ∪∪∪∪PY are also predecessor sets.

Resource Level Increments and Maximum Flow
Since we are interested in the maximum resource level we
want to find the predecessor set with maximum resource
level increment. We will do so by finding a maximum
flow for an auxiliary flow network built fromRH and
Pred(R).

Resource Increment Flow Problem: Given a set of
pending eventsRH for a cR-STNR, we define the resource
increment flow problemF(RH) with sourceσσσσ and sinkττττ as
follows:

1. For each evente ∈ RH there is a corresponding node
e∈F(RH).

2. For each evente+ ∈∈∈∈RH, there is an edgeσσσσ→→→→ e+ with
capacityc(e+).

3. For each evente- ∈∈∈∈ RH, there is an edgee-→→→→ττττ with
capacityc(e-), i.e., the opposite ofe-’s weight inR .

4.For each pair ofe1 and e2 with an edgee1→→→→e2 in the
precedence graphPred(R), there is a corresponding
link e1→→→→e2 in F(RH) with capacity +∞.

Figure 6: Resource increment flow problem.

2

34

3

4

4

5

4

+∞
+∞

+∞

+∞

+∞ +∞
+∞

+∞

+∞

+∞

e1s
e1e

e2s e2e

e4e

e4s

e3e

e3s

st

Internal flow (precedence constraints)

Incoming flow (producer events)

Outgoing flow (consumer events)

<[8, 14], -r2>

A3

<[5, 11], r2>

A2

<[0, 3], r1> <[4, 10], -r1>

[1, 1]

(a)

(c)
0 14

r1= 1; r2 = 2

5

1

2

(b)
0 14

r1= 2; r2 = 1

10

1

2

e2s e2e e3s e3e

0

1

10

r1= 1

-1

3 5

r1= -1

A1

<[0, 3], r1> <[5, 10], -r1>

(a)

(b) (c)

e1s e1e

As an example,Figure 6shows the auxiliary flow problem
for RT relative to the activity network inFigure 1.
A detailed discussion of flow problems is beyond the scope
of this paper (for a complete treatment see (Cormen,
Leiserson, Rivest 1990). Here we highlight some
fundamental concepts and relations that we will use. We
will indicate as f(e1, e2) the flow associated to a link
e1→→→→e2 in F(RH). The flow function is skew-symmetric,
i.e., f(e2, e1) = - f(e1, e2). Each flow has to be not greater
than the capacity of the link to which it is associated. For
example, referring to the flow network inFigure 6, 0 ≤≤≤≤ f(σσσσ,
e2e) ≤≤≤≤ 2, 0 ≤≤≤≤ f(e1e, ττττ) ≤≤≤≤ 4 and f(e4e, e4s) ≥≥≥≥ 0. Note that a
flow from e1 to e2 can be negative only if the flow network
contains an edgee2→→→→e1 with positive capacity. We also
use an implicit summation notationf(A, B) , whereB and
A are disjoint event sets inF(RH), to indicate the flowf(A,
B) = ΣΣΣΣa∈∈∈∈AΣΣΣΣb∈∈∈∈Bf(a, b). Consider now any subset of events
A⊆⊆⊆⊆RH and let us callA the set of eventsA = RH-A. The
following flow balance constraint always holds:f({ σσσσ}, A)
= f(A, { ττττ}) + f(A, A). The total network flow is defined as
f({ σσσσ}, RH) = f(RH, {ττττ}). The maximum flow of a network
is a function fmax such that the total network flow is
maximum.
The fundamental concept used by all known maximum
flow algorithms is theresidual network.This is a flow
network with an edge for each pair of nodes inF(RH) for
which the residual capacity,i.e., the difference between
edge capacity and flow, is positive. Each edge in the
residual network has capacity equal to the residual
capacity. For example, considering the network inFigure
6, assume thatf(e1e, ττττ) = 3 and f(σσσσ, e2e) = 2. The residual
network for that flow will have the flowing edges:e1e→→→→ττττ
with capacity1, ττττ→→→→e1e with capacity 3 ande2e→→→→σσσσ with
capacity 2. Also note that any residual network for any
flow of F(RH) will always have an edge of infinite capacity
for each edge in the precedence graphPred(R).
In this paper we will make use of three different kinds of
paths in the residual network. The first is anaugmenting
path connectingσσσσ to ττττ. The existence of an augmenting
path indicates that additional flow can be pushed fromσσσσ
to ττττ. Several maximum flow algorithms operate by
searching for augmenting paths. Alternatively, the lack of
an augmenting path is the condition that indicates that a
flow is a maximum flow. The second kind of path is a
flow-shifting path, a loop connectingττττ to τ which does not
affect the overall flow in the network. Finally, the third
kind is a reducing path,i.e., a path fromττττ to σσσσ. Pushing
flow through a reducing path reduces a network’s flow.
We now establish the relation between the resource level
increment ∆∆∆∆(A) and any flow in F(RH). We define the
producer weight inA as c(A+) = ΣΣΣΣe+ ∈∈∈∈ A c(e+) and the
consumer weight inA as c(A-) = ΣΣΣΣe- ∈∈∈∈ A c(e-). We also
define theproducer residualin A as r(A +) = c(A+) –
f({ σ}, A), i.e., the total residual capacity of the edge
incoming A from s, and theconsumer residualin A as
r(A -) = c(A-) – f(A, {ττττ}). The following relation holds.

Lemma 1: ∆∆∆∆(A) = r(A +) – r(A -) + f(A, A).
Proof: ∆∆∆∆(A) = c(A+) – c(A-) = (c(A+) – f({σσσσ}, A)) – (c (A-

) – f({σσσσ}, A)) = r(A +) – (c(A-) – f(A, {ττττ}) - f(A, A)) =
r(A +) – r(A -) + f(A, A). ����

We now focus on predecessor sets such asPX.

Lemma 2: f(PX, PX) ≤≤≤≤ 0. Moreover, f(PX, PX)=0 if and
only if f(e1, e2)=0 for eache1∈∈∈∈PX ande2∈∈∈∈PX.
Proof: From the definition of predecessor there is no edge
e2→→→→e1 in F(RH) with e1∈∈∈∈PX and e2∈∈∈∈PX. Therefore,f(e2,
e1) ≤≤≤≤ 0 and f(PX, PX) ≤≤≤≤ 0. The second condition can be
demonstrated by observing that the sum of any number of
non-positive numbers is0 if and only if each number is0.
����

Another way to express Lemma 2 is thatf(PX, PX)=0 if
and only if there is no linke1→→→→e2 in the residual network
wheree1∈∈∈∈PX ande2∈∈∈∈PX.

Corollary 1: ∆∆∆∆(PX) ≤≤≤≤ r(PX
+) - r(PX

-).
Proof: Immediate from Lemma 1 and Lemma 2.

Maximum flows and maximum resource level
increments
We are now ready to find the maximum positive resource
level increment. Note that we are not interested in event
sets with negative resource increments since, as we
discussed before, we will only account for events in our
resource envelope simulation if they have a positive
contribution. If they do not, we will take them into account
when we must, i.e., when their temporal upper bound
becomes lower or equal to the current simulation time.
First we address the problem of whetherRH contains a set
of predecessorsP* with positive resource level increment,
i.e., ∆∆∆∆(P*) > 0. To do so we will make use of a maximum
flow fmax of F(RH). We will indicate with r max(A)
producer/consumer residual computed forfmax. The
following fundamental theorem holds.

Theorem 1: Given a partial plan RH, there is a
predecessor setP* such that ∆(P*)>0 if and only if
rmax(RH

+) > 0.
Proof: ���� : We prove that if there is aP* such that∆∆∆∆(P*)>
0, then r max(RH

+) > 0. Assume thatr max(RH
+) = 0. This

means that for any predecessors subsetPX we have
r max(PX

+) = 0. From Lemma 2 we would have∆∆∆∆(P*) ≤≤≤≤
-r max(P

*-) ≤≤≤≤ 0, that is a contradiction.
⇐⇐⇐⇐: We prove that ifr max(RH

+) > 0 then we can identify a
P* such that∆(P*)>0. If r max(RH

+) is positive, there must
be somee+ such thatr max(e

+) > 0. Let’s selectP* as the set
of events reachable by some path in the residual network
originating frome+. The following three properties hold.
1. P* is a predecessor set.

If not, there will be an evente2 ∉ P* such that|e1e2| ≤≤≤≤ 0
for some evente1∈∈∈∈P*. From the definition ofPred(R),
however, we know that there must be a path inPred(R)
from e1 to e2. Since this path will be present inF(RH)
with all links having infinite capacity, the path will also
always be present in any residual network for any flow.
Therefore there is a path in the residual network going
from e+ to e1 to e2 ande2∈P*, which is a contradiction.

2.rmax(P
*-) = 0.

If not, there will be an evente- ∈∈∈∈ P* such thatr max(e
-) >

0. We can therefore build an augmenting path ofF(RH)
as follows: 1) an edgeσσσσ→→→→e+ with positive residual
capacityr max(e

+); 2) a path in the residual network from

e+ to e-, which exists by definition ofP*; and 3) an edge
e-→→→→ττττ with residual capacityr max(e

-). The existence of
the augmenting path means thatfmax is not a maximum
flow, which is a contradiction.

3. fmax(P
, P) = 0

SinceP* is a predecessor set, from the proof of Lemma
2 we know thatfmax(P

, P) ≤≤≤≤ 0. If fmax(P
, P) < 0, it

means that there is a pair of eventse1∈∈∈∈P* and e2∉∉∉∉P*

such thatfmax(e1, e2) < 0. This means that the residual
capacity frome1 to e2 is positive and therefore there is
an edgee1→→→→e2 in the residual network. But this means
thate2∈∈∈∈P*, which is a contradiction.

Applying the properties ofP* to the relation in Lemma 1
we obtain∆∆∆∆(P*) = r max (P*+) – rmax(P

*-) + fmax(P
, P) =

r max(P
*+) ≥≥≥≥ r max(e

+) > 0.�

It is now easy to find the predecessor setPmax with
maximum positive resource level increment.

Theorem 2: Consider all eventse+
i ∈∈∈∈RH such that

rmax(e
+

i) > 0 and consider the event setPmax = ∪∪∪∪e+i P*
i

where P*
i is the set of events reachable frome+

i in the
residual network of fmax. Then Pmax is a set of
predecessors inRH with maximum∆∆∆∆(Pmax) > 0.
Proof: Each of the P*

i has the properties proved in
Theorem 1. We show thatPmax also has those properties.
1. Being the union of predecessor sets,Pmax is also a

predecessor set.
2.We know thatr max(e

-) = 0 for eache- ∈∈∈∈ P*
i. Therefore

r max(P
-
max) = 0.

3.From Lemma 2 we know that sincef(P*
i, P*

i)=0, there is
no flow from events inP*

i to events inP*
i. Therefore

there is also no flow from events inP*
max = ∩∩∩∩i P*

i to
events in P*

max. Hence, from Lemma 2f(P*
max,

P*
max)=0.

Therefore∆∆∆∆(Pmax) = r max(P
+

max) > 0.
Moreover, since by constructionPmax contains alle+

i with
r max(e

+
i) > 0. Therefore, for any other predecessor setPX it

is r max(P
+

X) ≤≤≤≤ r max(P
+

max). Hence,∆∆∆∆(PX) ≤≤≤≤ r max(P
+

X) –
r max(P

-
X) ≤≤≤≤ r max(P

+
X) ≤≤≤≤ r max(P

+
max) = ∆∆∆∆(Pmax). ����

So far we have constructedPmax from a specific maximum
flow for F(RH). However, it turns out thatPmax is unique
for all maximum flows ofF(RH). MoreoverPmax contains
the minimum number of events among all predecessor sets
with maximum positive resource level increment.

Theorem 3: For any solution of the maximum flow
problem for F(RH), Pmax is the minimal predecessor set
with maximum resource level increment∆(Pmax).
Proof: Consider the set{f max,i} with i=1, …, n of all n
different maximum flows of F(RH). Since each
correspondingPmax,i is a maximum positive resource level
increment sets,∆∆∆∆(Pmax,i) = ∆∆∆∆max. Also, given two distinct
maximum flows i and k, we havePmax,i = Pi∩∩∩∩k ∪∪∪∪ Pk-i

wherePi∩∩∩∩k= Pmax,i ∩∩∩∩ Pmax,k andPk-i= Pmax,k - Pmax,i. In the
following we will indicate with r j(e) the residualr max(e)
computed in flowfmax,j.
First we observe that for any two distincti andk, ∆∆∆∆(Pi∩∩∩∩k)=
∆∆∆∆max. In fact, Pi∩∩∩∩k is a predecessor set andr i(Pi∩∩∩∩k

-)=
r k(Pi∩∩∩∩k

-)=0. Therefore∆∆∆∆(Pi∩∩∩∩k)= r i(Pi∩∩∩∩k
+)= r k(Pi∩∩∩∩k

+). We
need now to show thatr i(Pi∩∩∩∩k

+) = r i(Pmax,i
+) = r i(Pmax,k

+) .

In fact, it must ber i(Pk-i
+)=0 sincePmax,i must contain all

e+ events withr i(e
+) > 0. Also, ∆∆∆∆max= r i(Pmax,i

+)=∆∆∆∆(Pmax,k)
≤≤≤≤ r i(Pmax.k

+) – ri(Pmax,k
-) ≤≤≤≤ r i(Pmax,k

+) which implies
r i(Pi-k

+)=0. But this means that the flow in∆∆∆∆(Pi∩∩∩∩k) is self
contained, i.e., there is no edge in the residual network of
flow fmax,i that exitsPi∩∩∩∩k. Therefore, in this flow none of
the events inPi-k is reachable from ane+ event and
thereforePi-k=∅∅∅∅. With a symmetric argument we can see
that Pk-i=∅∅∅∅. Therefore for anyi and k it must bePmax,i=
Pmax,k = Pmax. The minimality of Pmax derives from
applying to Pmax −−−− P∅∅∅∅ the same argument used to
demonstrate thatPi-k is empty, where P∅∅∅∅⊆⊆⊆⊆Pmax is a
predecessor graph with maximum positive resource level
increment. �

Building Resource Envelopes
So far we know that the resource level at timet ∈∈∈∈ H for a
given schedules is the sum of the weights of the events in
CH plus those of the events in some predecessor setPX. It
is not immediatelyobvious that the converse also applies,
i.e., that given any predecessor setPX one can determine a
time tX ∈∈∈∈ H, the separation time, and a schedulesX, the
separation schedule,such that all and only the events in
CH∪PX are scheduled at or before timetX. The reason this
is not obvious is that events are still constrained by upper
bound constraints, i.e., the metric links that are not
included in Pred(R). Scheduling some event too early
with respect totX may therefore force some event to occur
before timetX whether the event is a successor inPred(R)
or not. We will show that indeed we can find a separation
time and schedule forany PX and therefore also forPmax.
For the latter we will show thattX represents one of the
times at which the resource level is maximum overH for
any schedule. This will yield the resource envelopeL max if
we reduceH to a timet and scant over the horizonT.

Latest events
The first step is to identify the events inPX that will be
scheduled at timetX. We say thate is a latest eventof PX

if it is not a strict predecessor of any other event inPX,
i.e., for anye1 ∈∈∈∈ PX, |e1 e| ≥≥≥≥ 0. There must be at least one
latest event inPX. If not, for every eventek ∈ PX, there
would be an eventei ∈ PX such that|ei ek | < 0. But this
would mean that it would be possible to create a cycleei(1)

ÿÿÿÿ ei(2) ÿÿÿÿ … ÿÿÿÿ ei(n) linked by links|ei(k) ei(k+1)| < 0, which
is a contradiction to the hypothesis of temporal
consistency ofR. We will call PX,late the set of all latest
events inPX. Also, we definePX,early = PX – PX,late.

The following properties hold for the temporal relations
between events inPX, late, PX, early andPX.

Property 1: For any two eventse1, e2 ∈∈∈∈ PX, late, |e1e2| ≥≥≥≥ 0
and |e2 e1| ≥≥≥≥ 0.

Property 2: For any two eventse1 ∈ PX and e2 ∈∈∈∈ PX, late,
|e2 e1| > 0.
If not, e1 would belong toPX by the definition ofPX.

Property 3: Any evente1∈∈∈∈ PX,early is a strict predecessor
of somee2 ∈∈∈∈ PX, late, i.e., |e2e1| < 0.

If not, consider any two eventse1,e3 ∈∈∈∈ PX,early. For anye2 it
would be|e2e1|=0 and |e2e3|=0. Therefore,0=|e2e3| ≤≤≤≤ |e2e1|
+ |e1e3| = |e1e3|, i.e., |e1e3| ≥≥≥≥ 0. Since this would be true for
any pair of events inPX,early and for all distances between
any event inPX,early and any event inPX,late, all events in
PX,early would be latest events, i.e.,PX,early=∅∅∅∅.

Separation Time for Latest Events
We now show how to construct the separation timetX at
which we will schedule all latest events.

Lemma 3: There is a time interval[tX,min, tX,max] that is in
common among all time bounds[et(e), lt(e)] with e ∈∈∈∈
PX,lateand such thatstart(H) ≤≤≤≤ tX,max.
Proof: First, we show that there must be a time value in
common among all time bounds. If not, there would be
two eventse1, e2 ∈∈∈∈ PX,late such thatet(e1) > lt(e2). From
the triangular inequality we also have that|e1e2| ≤≤≤≤ - et(e1)
+ lt(e2) < 0, which is inconsistent with Property 1. Now,
assumestart(H) > t X, max. By the way the interval[t X, min,
tX, max] is constructed, there must exist an evente ∈∈∈∈ PX, late

such thatlt(e) = tX, max. For this event it would belt(e) <
start(H) that is a contradiction withe belonging toRH.����

We definetX= max (start(H), tX, min), with tX = start(H) if
PX=∅∅∅∅, in which casetX = start(H). We can then show
that the time bound of each event inPX indicates that each
of them can be scheduled aftertX.

Lemma 4: For any evente∈∈∈∈ PX, lt(e1) > tX

Proof: By definition of RH it must belt(e) > start(H). So
we only need to consider the case in whichtX = tX, min >
start(H). In this case there is at least one evente1 ∈∈∈∈ PX, late

such thatet(e1) = tX, min. For this event it is|e1 e| ≤≤≤≤ - et(e1)
+ lt(e). From Property 2 we know that|e1 e| > 0.
Therefore,lt(e) ≥≥≥≥ et(e1) + |e1 e| > et(e1) = tX, min.����

Separation schedule for predecessors
We now show how to build a separation schedulesX for PX

and tX, i.e., a schedule such thatsX(e) ≤≤≤≤ tX for e∈∈∈∈CH∪∪∪∪PX

and sX(e) > tX for e∈∈∈∈PX∪∪∪∪OX. Note that the following
discussion holds also ifPX=∅∅∅∅.
We will do this with the following algorithm.

1.Schedule alle’∈∈∈∈ PX, late at tX, i.e.,sX (e’) = tX.
2.Propagate time throughR obtaining new time bounds

[et’(e), lt’(e)] for eache∈∈∈∈E(R).
3. Schedule all eventse”∈ E(R) –PX,late at their new

latest time, i.e.,sX(e”) = lt’ (e”).
To show thatsX is a schedule we need to see that it is
consistent with respect toR. We see that step 1 is
consistent since: 1)tX belongs to the intersection of all
latest event time bounds; 2) since for any pair of latest
events|e1e2|≥≥≥≥0, scheduling one attX does not prevent any
other latest events to be scheduled at timetX as well. Step
3 above is also consistent since it is always possible to
schedule all events at their latest times without temporal
repropagation.
Now we need to show that the property defining a
separation schedule is satisfied forsX. Note that we
already know that it is satisfied for events inPX,late. By
definition of CH andOH, we also know that it is satisfied

for events in these two sets. Therefore, we need to show
that it is satisfied forPX,early andPX.
a) lt’(e) ≤≤≤≤ tX for all e ∈∈∈∈ PX,early

According to Property 3 we can pick an evente1∈∈∈∈PX, late

that |e1 e| < 0. From the triangular inequality we have
lt’(e) ≤≤≤≤ lt’(e 1) + |e1 e| < lt’(e1) = tX.

b) lt’(e) > t X for all e∈∈∈∈ PX.
From Lemma 4 we know that before the re-propagation
it was lt(e) > tX. After the propagation, either
lt’(e)=lt(e), in which case the condition is satisfied, or
lt’(e) has changed with a propagation starting from
some evente1∈∈∈∈ PX, late. So it must belb’(e) = tX + |e1e|
and since from Property 2|e1e| > 0, lt’(e) > tX.

We can now computeL max over the entire time horizonT.
Pmax(RH) indicates that it is computed overF(RH).

Theorem 4: The maximum resource consumption for any
schedule ofR over an intervalH⊆⊆⊆⊆T is given by∆∆∆∆ (CH) +
∆∆∆∆(Pmax(RH)).
Proof: We know that at any timet∈∈∈∈H the events inRH

that are scheduled beforet are a predecessor setPX. For
the resource level at timet it is always∆∆∆∆ (CH) + ∆∆∆∆(PX) ≤≤≤≤ ∆∆∆∆
(CH) + ∆∆∆∆(Pmax(RH)), the latter being the resource level at
the separation time for the separation schedule. This is
true also ifPmax(RH) is empty.�

There are two interesting special cases of Theorem 4.

Corollary 2: The maximum possible resource
consumption forR overT is equal to∆∆∆∆(Pmax(RT)).

This means that estimating the maximum possible
resource consumption over time has the same complexity
of a maximum flow problem.

Corollary 3: Lmax(t) = ∆∆∆∆(Ct)+∆∆∆∆(Pmax(Rt)).

The last formula tells us how to compute the resource
envelope. We now need to find an efficient algorithm.

Efficient Computation of Resource Envelopes
From Corollary 3, the naïve approach to compute a
resource envelope would be to iterate over all possible
t∈∈∈∈T. We can improve the running time by considering
that we only need to computeL max at times when eitherCt

or Rt changes. It is easy to see that this can only happen at
et(e) or lt(e) for any e∈∈∈∈E(R). Therefore we need to re-
compute a maximum flow for a partial network inR only
2n times, a substantial improvement over|T|.
The complexity of some known flow algorithms is
described inTable 1(Cormen, Leiserson, Rivest 1990).
Note that the number of edgesE is O(Vx) where V is the
number of events and1≤≤≤≤x≤≤≤≤2. Therefore the complexity of
maximum flow algorithm is alwaysO(Vk lgj(V)) with
1≤≤≤≤k≤≤≤≤5 and j ∈∈∈∈{0, 1}. Let us now consider the worst case
complexity of re-computing a flow atet(e)/lt(e). In the
worst case,Ct will remain empty at all times and the size
of eachRt will increase by1 for each computation of the
flow. Therefore the worst case complexity of this method
is O(ΣΣΣΣ i=1,…,VO(iklgj(i))=O(Vk+1lgj(V)), a polynomial of
higher order than maximum flow.

We can do better. Assume sorting all earliest andlatest
times in ascending order to yield a set{t(1), t(2), …,
t(2n)}. Suppose now that when we compute the maximum
flow for F(Rt(i)) we make as much use as possible of the
maximum flow for F(Rt(i-1)). In this case we can come up
with an algorithm with the same worst-case complexity as
computing the maximum flow on the entire network.

Incremental Change of Pending Events
Before we introduce the algorithm, let us consider the
differences betweenRt(i) and Rt(i-1) (1<<<<i≤≤≤≤n). The first
differenceδδδδ(Ct(i)) = Rt(i-1) – Rt(i) is the sets of eventse such
that t(i) = lt(e). They must move fromRt(i-1) to Ct(i) at time
t(i). The second difference,δδδδ(Rt(i)) = Rt(i) - Rt(i-1) are the
eventse such thatt(i) = et(e). They must move fromOt(i-1)

to Rt(i) at timet(i).
Figure 7gives a complete picture of how all relevant event
sets change at timet(i). In this pictureEmax(t(i-1)) = Ct(i-1)

∪∪∪∪ Pmax(Rt(i-1)) is the set of events needed to compute the
resource envelope at timet(i–1). Emax(t(i)) = Ct(i) ∪∪∪∪
Pmax(Rt(i)) is used to compute the resource envelope at time
t(i), with Ct(i) = Ct(i-1) + δδδδ(Ct(i)). The differenceEmax(t(i))
– Emax(t(i-1)) can be separated into two disjoint sets
δδδδ(Ct(i))– Pmax(Rt(i-1)) andPmax(Rt(i)) – Pmax(Rt(i-1)). The goal
of the efficient envelope algorithm is to identify the set
Pmax(Rt(i)) – Pmax(Rt(i-1)) with less effort than computing
Pmax(Rt(i)) and Pmax(Rt(i-1)) with separate maximum flow
computation and then differentiating them.

Table 1: Complexity of known maximum flow algorithms

Before proceeding notice thatFigure 7 assumes that
Pmax(Rt(i)) ∩∩∩∩ Pmax(Rt(i-1)) ⊆⊆⊆⊆ Pmax(Rt(i)). As we will see this
is indeed the case. The consequence of this is that as soon
as Pmax(Rt(i-1)) has been determined and accounted for in
the envelope calculation, the subnetwork ofF(Rt(i-1))
consisting of all events inPmax(Rt(i-1)) and all incoming
and outgoing edges can be deleted. This allows the
computation ofPmax(Rt(i))–Pmax(Rt(i-1)) directly from the
maximum flow of F(Rt(i)-Pmax(Rt(i-1))) which can save
significant work.
The second efficiency improvement is computing the
maximum flow of F(Rt(i)-Pmax(Rt(i-1)) by incrementally
modifying the flow of F(Rt(i-1)-Pmax(Rt(i-2))) during the
deletion of events inδδδδ(Ct(i)) and the addition of events in
δδδδ(Rt(i)) while maintaining the maximum flow property.

Incremental Modification of Maximum Flow
Let us focus on modifications of the flow network that
preserve the maximum-flow. To do so we introduce the
concept of aprefix and postfix of a resource increment
flow network F. Consider a partition of events in the
network in two event sets,Post(F) and Pref(F). We say
that Post(F) is a postfix ofF andPref(F) is a postfix ofF
if for each pair of eventse1∈∈∈∈Post(F) and e2∈∈∈∈Pref(F), |e2

e1| > 0. It is immediate to see that for any flow ofF it can
only be f(e2, e1)≤≤≤≤0. Therefore the residual network
contains an edgee2→→→→e1 only if there is an edgee1→→→→e2 in
the flow network and there is a positivef(e1, e2) passing
through it.
We can see thatδδδδ(Ct(i)) is a prefix ofF(A) whereA is any
subset ofRt(i-1) that containsδδδδ(Ct(i)). In fact, consider a
pair of eventse2 ∈∈∈∈ δδδδ(Ct(i)) ande1 ∈∈∈∈ A - δδδδ(Ct(i)). From the
definition of δδδδ(Ct(i)) we havelt(e2) = t and lt(e1) ≥≥≥≥ t+1.
From the triangular inequalitylt(e1) ≤≤≤≤ lt(e2) + |e2 e1| we
can deduce|e2 e1| ≥ lt(e1) - lt(e2) ≥≥≥≥ t +1– t = 1 > 0. A
similar argument applies to demonstrate thatδδδδ(Rt(i)) is a
postfix of F(B) whereB is any subsetRt(i) that contains
δδδδ(Rt(i)).

We now introduce two flow modification operations:flow
reductionandflow expansion.

Figure 7 : Incremental change for set of pending events

Flow contraction: Consider a networkF(A), a flow f for
F(A) and a prefix ofA, Pref(A). Flow contraction consists
of the following two steps:

1)while there is a flow-shifting path in the residual
network connecting ane- event inPref(A) to an e-

event in A-Pref(A), push flow along the path and
update the residual network accordingly;

2)while there is a reducing path in the residual network
connecting ane- event inPref(A) to ane+ event inA-
Pref(A), push flow along the path and update the
residual network accordingly.

Lemma 5: If the flow fmax is maximum forF(A), flow
contraction produces a maximum flow forF(A-Pref(A)).
Proof: If fmax is maximum, the flowf’ produced at the end
of step 1 is still a maximum flow forF(A). This because
flow shifting does not affectf({s}, A+) since no flow is
pushed back through any edgef(s, e+). At the end of step 2
we will have a flow f”. Note however that any
modification of the residual network in step 2 can only
eliminate existing edges and therefore eliminate paths.
Sincef’ maximality implies that there are no augmenting
paths in it going to eventse-∈∈∈∈A-Pref(A) , there will be no
such augmenting paths inf” either. Thereforef” will be
maximum inF(A- Pref(A)).����

Note that in achieving the maximum flow forF(A-
Pref(A)) it is always better to us flow-shifting paths before
reducing paths, since if flow needs to be moved from

Ford-Fulkerson O(E |f*|)

Edmonds-Karp O(VE2)

Simple preflow-push O(V2E)

Preflow-push O(V3)

Goldberg-Tarjan O(VE lg(V2/E))

Rt(i-1)

Ct(i-1)

Rt(i)

Emax(t(i))

Emax(t(i-1))

δ(Ct(i))

δ(Rt(i))

Pmax (Rt(i-1))

Pmax (Rt(i))

Pref(A) to A-Pref(A) to achieve optimality, a flow-
shifting path is always shorter than the concatenation of a
reducing and an augmenting path.

Flow expansion:Consider a networkF(A), a postfix of
A, Post(A)), a flow f for F(A-Post(A)). Flow expansion
consists of the following steps:

• while there is an augmenting path in the residual
network ofF(A) connecting ane+ event inPost(A) to
an e- event inA, push flow along the path and update
the residual network accordingly.

It is clear that flow expansion produces a maximum flow
fmax for F(A). Also, if the starting flow forF(A-Pref(A)) is
a maximum flow, flow augmentation will minimize work.
This is important in our application of maximum flow to a
sequence of n F(Rt(k)) problems since re-doing
unnecessary work may negatively impact asymptotic
complexity.

Flow Network Reduction
Now we will show that it is always safe to eliminate any
events inPmax(Rt(i-1)) from consideration once their impact
on L max(t(i-1)) has been recorded. Consider the set
δδδδ(Ct(i))∩Pmax(Rt(i-1)). The effect of these events is already
included in L max(t(i-1)) and therefore their contribution
does not need to be included inL max(t(i)). Let us now
consider the effect that flow reduction applied to these
events has on the maximum flow ofF(Rt(i-1) ∩∩∩∩ Rt(i)). From
the property of the predecessor set with maximum
resource level increment, we know thatf(e1,e2)=0 and
f(e2,e1)=0 with e1∈Pmax(Rt(i-1)) and e2∈Pmax(Rt(i-1)).
Therefore, the residual network for the maximum flow of
F(Rt(i-1)) does not have any edgese2→→→→e1. Also, since alle-

∈∈∈∈ Pmax(Rt(i-1)) are saturated (r max(e
-)=0), there cannot be

any edgee2→→→→t in the residual network. Therefore, there
cannot be any flow shifting and the only way to push flow
back from ane-∈∈∈∈ Pmax(Rt(i-1)) is to do so through ane+∈∈∈∈
Pmax(Rt(i-1)). Therefore, flow changes during flow
contraction due to events inPmax(Rt(i-1)) do not affect the
rest of the network.
Consider nowPmax(Rt(i-1))−−−−δδδδ(Ct(i)). We know that after
contraction the flow is maximum forF(Rt(i-1)∩∩∩∩Rt(i)).
Therefore all e-∈∈∈∈Pmax(Rt(i-1))−−−−δδδδ(Ct(i)) are still saturated.
Also, there will be at least onee+∈∈∈∈Pmax(Rt(i-1))−−−−δδδδ(Ct(i))
with r max(e

+)>>>>0. If we now add δδδδ(Rt(i)) and apply flow
expansion, we know that throughout the process there will
be no augmenting path exiting frome-∈∈∈∈Pmax(Rt(i-

1))−−−−δδδδ(Ct(i)). At the end of the process,Pmax(Rt(i-1))−−−−δδδδ(Ct(i))
will still be isolated and therefore ∆∆∆∆(Pmax(Rt(i-

1))−−−−δδδδ(Ct(i)))>0. Therefore Pmax(Rt(i))⊇⊇⊇⊇Pmax(Rt(i-1))−−−−δδδδ(Ct(i)).
Therefore,∆∆∆∆(Pmax(Rt(I-1))) will be part of bothL max(t(i-1))
and L max(t(i)). Moreover, the presence ofPmax(Rt(i-1)) has
no effect on the flow modification operations and therefore
all events inPmax(Rt(i-1)) together with their incoming and
outgoing edges can be safely eliminated from any flow
network considered by the algorithm afterF(Rt(i-1)).
Figure 8 shows the pseudocode of the algorithm. Here we
assume that after executing flow contraction , the function
Flow_Contraction function also deletes from the networkF
the portion pertaining to the events inp.Eclose. Similarly
we expect Flow_Expansion to add to F the portion

pertaining to Epend. The function Network_Reduction
deletes from the networkF the portion pertaining toPmax.
Finally, Extract_P_max finds the Pmax in the maximum
flow of F by collecting the events that are reachable in the
residual network ofF from eache+ with r max(e

+)>0.

Complexity Analysis
Now we can show that the complexity of
Resource_Envelope is asymptotically the same as running
a flow algorithm over the flow networkF(R) for the entire
cR-STN. We demonstrate this for the Ford-Fulkerson
method. This is the simplest maximum flow method and
tends not to perform well when the internal “pipes” of the
flow network have bottlenecks (Cormen, Leiserson, Rivest
1990). However, this is not true forF(R) in which the
capacity of all internal pipes is +∞. Therefore in our case
the Ford-Fulkerson method should perform well. The
complexity of Ford-Fulkerson isO(E |fmax|), where E is
the number of edges in the flow network and|fmax| is the
amount of the maximum flow pushed through the
network.

Figure 8: Maximum resource envelope algorithm.

Let us consider separately the total cost of the three flow
propagations inFlow_Expansion andFlow_Contraction: the
one across augmenting paths, the one across flow-shifting
paths and the one across reducing paths.
Consider the propagation across augmenting paths.
Consider the total flow that we will be able to push from
the source throughout these propagations. Since when we
push flow from e+ events inδδδδ(Rt(i)), some eventse- may
have become unavailable (through deletion) or saturated
(due to flow shifting). Therefore the total flow we can
push inFlow_Contraction is no greater than|fmax| in F(R).
Moreover, the set of edges over which the search for
augmenting paths is conducted is always not greater in

Resource_Envelope (R, Pred(R))
{ Lold := 0; /* envelope level at previous iteration time */

Pmax := ∅∅∅∅ /* temporary variable to hold Pmax */
Envelope := ∅; /* envelope profile, a list of pairs e=<t, L> where t is the

time at which the envelope reaches level L. The
envelope stays constant at L until the time of the
following entry in the list */

F := ∅; /* auxiliary flow graph for F(Rt(i)-Pmax(Rt(i-1))*/
E := {sorted list in ascending order of t of triples <Eclose, Epend, t> where Eclose

is the set of events e in Pred(R) such that lt(e) = t and Epend is the list
of events e in Pred(R) such that et(e) = t};

t := 0
while (E is not empty)
{ Ecur := ∅∅∅∅;

p := pop(E);
t := p.t;
F := Flow_Contraction(F, p.Eclose);
F := Flow_Expansion(F, p.Epend, Pred(R));
Pmax := Extract_P_max (F);
F := Network_Reduction(F, Pmax);
Lnew := Lold + ∆∆∆∆(Eclose) + ∆∆∆∆(Pmax);
Envelope := append (<t, Lnew>, Envelope);
Lold := Lnew;

}
}

each invocation ofFlow_Expansion than in the the
application of maximum flow to the entireF(R).
Therefore, the total cost ofFlow_Expansion is O(E |fmax|)
Consider now the propagation across flow-shifting paths
in Flow_Contraction. Consider an auxiliary flow graph
Shift(R) built as follow: for eachδδδδ(Ct(i)) consider all edges
in the flow-shifting paths before the application of
Flow_Contraction(F, δδδδ(Ct(i))) and for each pair of eventse1

and e2 (including σσσσ and ττττ) add the link with maximum
capacity in some of the flow-shifting paths across all
invocations of Flow_Contraction. The total number of
edges inShift(R) is bounded by2 E + 2 V, since this is
the maximum number of edges in a residual network.
Considering now pushing flow from ane- in δδδδ(Ct(i)), we
notice that the pipes that are available inShift(R) are no
smaller than those available in the flow-shifting paths
during the execution ofFlow_Contraction. Moreover, the
lengths of the paths is no shorter inShift(R) than in each
invocation ofFlow_Contraction since events are not deleted
in Shift(R). Finally, the total flow that can be shifted is no
greater than|fmax|, since this is an upper bound of the
maximum amount of flow that reachesττττ from somee-.
From this argument we can see that the total amount of
work done during the flow-shifting stepFlow_Contraction
is bounded byO(E |fmax|). A similar argument applies to
the flow reduction step inFlow_Contraction with its
complexity again bound byO(E |fmax|). Therefore the total
cost of Flow_Contraction and Flow_Expansion in
Resource_Envelope is bounded by3 O(E |fmax|).
Considering the other steps inResource_Envelope, the
sorting step to initializeE is O(V lgV), and the total cost
of Extract_P_max and of incrementally constructing and
deleting the flow network, is 3 O(E). Under the reasonable
assumption that the asymptotic cost of flow computation
dominatesO(V lgV), the total cost ofResource_Envelope
is O(E |fmax|), i.e., it has the same asymptotic complexity
than running the flow algorithm once over the entire
F(R).

Conclusions
In this paper we describe an efficient algorithm to
compute the tightest exact bound on the resource level
induced by a flexible activity plan. This can potentially
save exponential amounts of work with respect to looser
bound computations. Future work includes testing the
practical effectiveness of resource envelopes in scheduling
search for problems with multi-capacity resources. This
includes both direct use as a backtracking and termination
criterion in a constrained based scheduling algorithm for
multi-capacity resources and the additional development
of effective variable and value ordering heuristics based on
resource envelopes.

References
J.C. Beck, A.J. Davenport, E.D. Davis, M.S. Fox. Beyond Contention:
Extending Texture-Based Scheduling Heuristics. inProceedings ofAAAI
1997, Providence, RI, 1997.
A., Cesta, A. Oddi, S.F. Smith,A Constraint-Based Method for Resource
Constrained Project Scheduling with Time Windows, CMU RI Technical
Report, February, 2000.
H. S.F. Cooper Jr.,The Loneliness of the Long-Duration Astronaut,Air &
Space/Smithsonian, June/July 1996, available at
http://www.airspacemag.com/ASM/Mag/Index/1996/JJ/llda.html

T.H. Cormen, C.E. Leiserson, R.L. Rivest.Introduction to Algorithms.
Cambridge, MA, 1990.
R. Dechter, I. Meiri, J. Pearl. Temporal Constraint Networks.Artificial
Intelligence, 49:61-95, May 1991.
P. Laborie, Algorithms for Propagating Resource Constraints in AI Planning
and Scheduling: Existing Approaches and New Results,Proceedings of
ECP 2001,Toledo, Spain, 2001.
P. Morris, N. Muscettola, T. Vidal. Dynamic Control of Plans with
Temporal Uncertainty, inProceedings of IJCAI 2001,Seattle, WA,2001
N. Muscettola. On the Utility of Bottleneck Reasoning for Scheduling. in
Proceedings ofAAAI 1994, Seattle, WA,1994.
W.P.M. Nuijten. Time and Resource Constrained Scheduling: a Constraint
Satisfaction Approach. PhD Thesis, Eindhoven University of Technology,
1994.
N. Sadeh. Look-ahead techniques for micro-opportunistic job-shop
scheduling. PhD Thesis, Carnegie Mellon University, CMU-CS-91-102,
1991.
I. Tsamardinos, N. Muscettola, P. Morris. Fast Transformation of Temporal
Plans for Efficient Execution. inProceedings ofAAAI 1998,Madison, WI,
1998.

